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By George Levy, PhD, Numerical Algorithms Group

In a previous Financial Engineering News article [1] the author gave introductory details concerning the
use of quasi-random numbers for Monte Carlo simulation. The benefits to be gained by using quasi-
random numbers instead of pseudo-random numbers were illustrated by using different random
sequences to estimate the known value of a six-dimensional integral.
The sequences were obtained using both the NAG pseudo-random number generators and the NAG
quasi-random generators [2][3], and the  integral was estimated by uniformly sampling the six-dimensional
unit hypercube. The results illustrated that quasi-random numbers can give more accurate integral
estimates.

In this article we present results of using NAG software to estimate the value of some (simple) financial
derivatives. Here instead of generating uniform pseudo-random and uniform quasi-random sequences we
generate multivariate Normal pseudo-random and multivariate Normal quasi-random sequences with a
given mean and covariance matrix. The current price of the financial derivative is estimated by evaluating
an integral which represents the expected (discounted) value of the derivative’s pay-off at maturity.

First we will briefly consider the Black Scholes option model.

This assumes that the process followed by the underlying asset, S, is:

where dS is the change in the asset price over the time interval dt, r is the risk free interest rate,
σ is the volatility of the asset S, and dX is drawn from a Normal distribution with mean zero and variance
dt.

Using Ito’s lemma [4] we then find that the process followed by Y = log(S) is:

where dY is the change in value of log(S) over the time interval dt. It can also be shown that the value of
an option, V, written on S, satisfies the following (Black Scholes) partial differential equation:

The above equations can be generalized to deal with multi-asset options. For example, an option on three
assets, uses the following process:

where the subscript i refers to the value associated with the i th asset. We can also write the above
equation in vector form by introducing the three element vector dY which is Normally distributed as:

where m is the mean vector, and C is the covariance matrix. The elements of the covariance matrix are:
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and ijρ  is the correlation coefficient between asset i and asset j. The elements of the mean vector m are:

The value, V, of an option written on three assets now satisfies the following partial differential equation:

In Tables 1-4 we present results of using both quasi-random (Sobol) sequences and pseudo-random
sequences to evaluate European put and call options on the maximum and minimum of three assets.
Here the Monte Carlo estimates are compared with the accurate values, which we computed using finite
difference lattices [5].

For a European call option on the maximum of three assets the pay-off at option maturity (time τ ) is:
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where 3,..,1, =iiSτ
 denotes the value of the i th asset at maturity, and E represents the strike price.

Similarly a European put option on the minimum of three assets has a pay-off at time τ given by:
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It can be seen that the Sobol sequence always gives better results than pseudo-random sequences.
This is particularly pronounced in Table 2 and Table 3 where European call options are estimated.

  Number of points       Quasi-random       Pseudo-random

    500    0.890 (0.0459)  1.104 (0.1684)
   1000    0.924 (0.0115)  1.012 (0.0833)
   1500    0.919 (0.0168)  0.896 (0.0403)
   2000    0.932 (0.0043)  0.899 (0.0365)
   2500    0.932 (0.0036)  0.889 (0.0474)
   3000    0.937 (0.0014)  0.902 (0.0334)

Table 1: The computed values and absolute errors in brackets for European put options on the maximum of three assets.
Monte Carlo simulation was used with both pseudo-random and quasi-random sequences.  The parameters were:

,5.0231312,2.0321,1.0,100321 =========== ρρρσσσrSSSE  and .1=τ  The number of

points used varied from 500 to 3000. The accurate value of the option is 0.936, which was computed using a finite
difference lattice.

  Number of points       Quasi-random       Pseudo-random

    500    22.629 (0.0432)  22.409 (0.2631)
   1000    22.683 (0.0113)  22.352 (0.3199)
   1500    22.670 (0.0023)  22.635 (0.0374)
   2000    22.685 (0.0139)  22.767 (0.0955)
   2500    22.670 (0.0016)  22.933 (0.2605)
   3000    22.679 (0.0073)  22.805 (0.1330)

Table 2: The computed values and absolute errors in brackets for European call options on the maximum of three assets.
Monte Carlo simulation was used with both pseudo-random and quasi-random sequences. The parameters were:

,5.0231312,2.0321,1.0,100321 =========== ρρρσσσrSSSE  and .1=τ  The number of

points used varied from 500 to 3000. The accurate value of the option is 22.772,  which  was computed using a finite
difference lattice.
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  Number of points       Quasi-random       Pseudo-random

    500    7.365 (0.0381)  7.676 (0.2729)
   1000    7.425 (0.0215)  7.761 (0.3577)
   1500    7.408 (0.0051)  7.565 (0.1624)
   2000    7.399 (0.0036)  7.482 (0.0789)
   2500    7.407 (0.0041)  7.360 (0.0437)
   3000    7.400 (0.0027)  7.400 (0.0033)

Table 3: The computed values and absolute errors in brackets for European put options on the minimum of three assets.
Monte Carlo simulation was used with both pseudo-random and quasi-random sequences. The parameters were:

,5.0231312,2.0321,1.0,100321 =========== ρρρσσσrSSSE  and .1=τ  The number of

points used varied from 500 to 3000. The accurate value of the option is 7.403,  which  was computed using a finite
difference lattice.

  Number of points        Quasi-random       Pseudo-random

    500    5.312 (0.0634)  5.308 (0.0596)
   1000    5.293 (0.0439)  5.437 (0.1886)
   1500    5.253 (0.0041)  5.412 (0.1631)
   2000    5.266 (0.0173)  5.403 (0.1539)
   2500    5.267 (0.0177)  5.469 (0.2201)
   3000    5.245 (0.0035)  5.433 (0.1841)

Table 4: The computed values and absolute errors in brackets for European call options on the minimum of three assets.
Monte Carlo simulation was used with both pseudo-random and quasi-random sequences. The parameters were:

,5.0231312,2.0321,1.0,100321 =========== ρρρσσσrSSSE  and .1=τ  The number of

points used varied from 500 to 3000. The accurate value of the option is 5.249,  which  was computed using a finite difference
lattice.

  The Monte Carlo simulation routines used in this article could easily be extended to value derivatives
  on ten or even twenty underlying assets. However, this is not true for the finite difference lattices.
  They can only really be used to value contracts on up to about four assets before they require
   impossibly large amounts of computer memory.

More details concerning both the results and methods presented in this article are available[6], this
includes computer code for Monte Carlo simulation and also multi-asset finite difference lattices.

George Levy  works at NAG Ltd UK, he can be contacted at george@nag.co.uk.
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